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The increasing volume of text data is challenging the cognitive capabilities of expert analysts. Machine
learning and crowdsourcing present new opportunities for large-scale sensemaking, but we must overcome
the challenge of modeling the overall process so that many distributed agents can contribute to suitable
components asynchronously and meaningfully. In this paper, we explore how to crowdsource the sensemaking
process via a pipeline of modularized steps connected by clearly defined inputs and outputs. Our pipeline
restructures and partitions information into "context slices" for individual workers. We implemented CrowdIA,
a software platform to enable unsupervised crowd sensemaking using our pipeline. With CrowdIA, crowds
successfully solved two mysteries, and were one step away from solving the third. The crowd’s intermediate
results revealed their reasoning process and provided evidence that justifies their conclusions. We suggest
broader possibilities to optimize each component, as well as to evaluate and refine previous intermediate
analyses to improve the final result.
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1 INTRODUCTION
Intelligence analysts working to prevent terrorist attacks and preserve national security have access
to an unprecedented wealth of data about persons of interest. Yet, events such as the September
11th, 2001 terrorist attacks and the miscall on weapons of mass destruction in Iraq — "the two major
U.S. intelligence failures of this century" [14] — illustrate the difficulties that even experienced
professionals face in analyzing this data, and the high-stakes consequences of failure. Traditional
intelligence analysis faces the ongoing challenges of distinguishing crucial information from noise
and dealing with incomplete pieces. Marshaling and synthesizing heaps of evidence is especially
difficult. As observed by Wright et al., "To get the big picture by looking at many pages of text, the
analyst relies heavily on memory to connect the dots" [64]. In this paper, we focus on a class of
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problems that involve solving mysteries, in which analysts must sort through many snippets of
textual information to identify a latent plot, such as a suspect or target.
The sensemaking process of intelligence analysts has been modeled as an iterative loop of

interdependent steps that involves foraging for relevant information and synthesizing it into
credible hypotheses [48]. However, the process ultimately relies on the experts to make ad hoc
decisions on which steps to conduct and how to order the workflow. Making sense of massive
amounts of complex information that comes from various sources and discerning critical patterns
and anomalies is a cognitively demanding task for individual experts.

Several areas of research attempt to support this sensemaking process. Visual analytics tools have
been developed to leverage technological support for some specific steps [20, 25]. Collaborative
sensemaking among experts can bring together diverse expertise and perspectives, but often
suffers from biases and inefficiencies [24, 53]. Machine learning can process the data to provide
starting points for analysts [65], but deciphering the rich information encoded in text data is still
AI-hard [67].

Alternatively, crowdsourcing is a powerful new paradigm that augments individual human
intelligence at large scale, showing potential to bridge the gaps between the information overload
and the limited cognitive capacity of individual experts. By modularizing a big problem into many
small, manageable problems and aggregating results from small solutions into a big meaningful
result, prior research has successfully used crowds for complex data analysis tasks like taxonomy
generation [11], bottom-up qualitative analysis [1], and organizing online information [23].
However, sensemaking with large amounts of data introduces two major problems for mod-

ularization. First, the entire sensemaking process, as required for solving mysteries, is a highly
integrated cognitive activity composed of iterative information foraging, schematizing, and synthe-
sizing, that is difficult to formalize into a workflow of microtasks for novice crowd workers [55].
Second, sensemaking requires a holistic view of the data, making it difficult to subdivide the data
into small local slices while preserving global data context for crowd workers. To overcome these
problems, we need a model that adequately captures and translates the expert sensemaking process
for large crowds of transient novice workers.

With this motivation, we address the following research questions in this paper:
RQ1. To support crowds, how can we formally modularize the sensemaking process into a series of

steps that each defines the information needs (Step Input) and intermediate analysis results
(Step Output)?

RQ2. Within each step, how do we slice the Step Input into contextualized microtasks for individual
crowd workers, and aggregate the local analysis results into Step Output?

RQ3. How well do crowds perform in solving mysteries with the modularized sensemaking process,
and specifically, how do crowds perform in each step?

To address these questions, we designed a pipeline to support crowdsourced sensemaking
informed by preliminary studies with both individual users and crowds. We implemented the
pipeline as a software platform called CrowdIA. We evaluated the pipeline by deploying CrowdIA
on Amazon Mechanical Turk (MTurk) to guide crowds in solving mysteries. In these empirical
studies, the crowds successfully solved easy and moderate mysteries, and were one step away from
solving a difficult mystery. Our main contributions are as follows:
(1) We modularized the sensemaking loop into a pipeline with clearly defined Step Inputs and

Step Outputs, such that each step can be separately investigated by crowd workers.
(2) We designed methods to (a) restructure and distribute Step Inputs into cohesive "context

slices" as local task inputs for each individual crowd worker to contribute meaningfully, and
(b) to combine crowd results into the corresponding Step Outputs.
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Fig. 1. Overview of our pipeline for crowdsourced analysis of the difficult Sign of Crescent dataset.

Fig. 2. Sensemaking loop [48], image source [15] (left). Example of how each component is modularized in
the pipeline (right).

(3) We developed CrowdIA, a system that facilitates execution of our pipeline, and evaluated its
feasibility in enabling novice, transient crowd workers to solve mysteries.

We further suggest that the modularized pipeline can open up the sensemaking process as a test-bed
environment for researchers to design and evaluate novel interfaces for each step.

2 RELATEDWORK
Intelligence analysts make sense of large amounts of information by iteratively foraging for relevant
source data (1. search and filter), extracting useful information (2. read and extract), organizing and
re-representing the information with their mental models (3. schematize), developing hypotheses
from different perspectives (4. build case), and deciding on the best explanation (5. tell story). Pirolli
et al. [48] informally modelled this process as a main loop composed of an information foraging
sub-loop and a sensemaking sub-loop, each iterating on smaller intertwined steps (Fig. 2 left).
HCI research on improving sensemaking in different domains and settings, as we review in later
sections, can be considered as fitting in different parts of the sensemaking loop.

2.1 Collaborative Sensemaking: Communication and Hand-off
Analysts collaborate on sensemaking tasks by using visual analytics tools to annotate, link, and
spatially organize documents and named entities; forage for information; identify topics; and plan
more in-depth analysis [5, 13, 19, 21]. One key challenge is to collect and mentally compare the
relevant information scattered across many locations. Metaphors like folders and bookmarks are
used to organize fragments of information to create task-specific contexts [10].

Another challenge is the hand-off of intermediate results between analysts. Given the non-routine
nature and black-box mental models of analysts, hand-off in collaborative sensemaking is seldom
successful unless it happens very early (transfer) or very late (referral) in the process [49]. Analysts
examine the entities in the documents from different perspectives (e.g., categories, document
contents) [4, 52] and data structures (concept map [13], bicluster [54]). A visualization of data links
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is more effective as an intermediate analysis artifact than a notepad of annotations [27]. Such hand-
offs still rely on a shared understanding of the schema and visual layout of the information [2, 21, 50].
To help establish the shared understanding, Zhao et al. [69] developed Knowledge-Transfer Graphs
that automatically capture, encode, and streamline analysts’ interactions to support hand-off of
partial findings during analysis. However, this introduces a new risk of sharing a premature focus
on wrong suspects and can derail the overall investigation trajectory. To address this issue, Goyal
et al. [26] proposed a social translucence interface to raise analysts’ self-awareness, shedding light
on when and how distributed collaborative pairs share intermediate hypotheses to enhance the
analysis quality. However, these and most other collaborative sensemaking projects focus mainly
on certain sensemaking components [30, 61, 63] or assume the same analysts are involved in the
entire session [12, 16, 56].

We explore how sensemaking process can bemodularized so that intermediate analysis results can
be passed to subsequent analysts with minimal hand-off learning curve. Small group collaboration
relies heavily on analysts spending enough time and attention understanding and building on
previous work by others, an approach that generally does not scale well for crowdsourcing. We
next consider existing crowdsourcing approaches in complex sensemaking work.

2.2 Crowdsourcing Complex Cognitive Tasks: Large-Scale Coordination
Researchers have found success in systems that leverage crowdsoucing for information synthesis
guided by experts. Crowds have improved the quality of selected components of sensemaking. For
example, Wang et al. [60] use crowds to verify and remove duplicated database records identified by
computers, and Soylent [3] used crowds to shorten and proofread text as part of a word processor.
As tasks become more complex, processes become more interdependent, and workflow and

task designs play a more important role in crowd sensemaking. Current research relies on experts
to provide ideal input and generate a guideline [8, 33] or specific goals [29, 58] to address the
tension between local micro tasks and the global view of the whole dataset, balancing structure,
flexibility and expert guidance [36]. Crowd Synthesis [1] scaffolds expertise for novice crowds via a
classification-plus-context approach, where crowds first re-represent the text data then iteratively
elicit categories. We build on the re-representation stage in the design of Step 2 of our pipeline
to extract key information pieces from the documents and simplify the clustering stage in Step 3
with predefined tags to facilitate later hypothesize. Crowdlines [23] found that exposing individual
crowd workers to more information (high context) and less guidance (low structure) and using
tournament-style workflows yields higher quality results, faster completion times, and higher
completion rates in topic merging tasks. We take inspiration from Crowdlines’ synthesis interfaces
and parallelized, hierarchical workflows. But rather than synthesizing information into a summary
of a given topic, we explore the possibility of leveraging crowds to solve mysteries, which requires
discovering less obvious connections and developing hypotheses to uncover the hidden truth.
Parikh et al.’s [47] notion of human-debugging, originally applied to computer vision research,

takes out each specific component in the computational system’s pipeline and uses human subjects
to transform the same input given to machine into the output. Drawing inspiration from this
paradigm, and the CrowdForge framework for complex crowd tasks [37], we modularize the
components of the sensemaking loop [48] and decompose each step input into context
slices so that distributed novice crowd workers can contribute meaningfully.

Below we describe the process and challenges involved in designing the pipeline, particularly fo-
cusing on issues central to provenance and hand-off within and between sensemaking components.
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Fig. 3. Prototype Interface: Example task specification interface, input data file, and output answer sheet.

3 DESIGN PROCESS: PRELIMINARY STUDIES
The above related work suggests two hard problems in crowdsourcing the entire sensemaking
process. One problem (RQ1) involves identifying information needs (Step Input) and intermediate
analysis results (Step Output) of each step in the analysis, such that each step has a clear goal
and progresses along the sensemaking process while preserving provenance. A second problem
(RQ2) involves distributing the work required to analyze each Step Input among crowd workers
and meaningfully aggregate local results as the Step Output. Below, we describe our approach to
addressing these problems, leading to the final pipeline design implemented in CrowdIA.

3.1 RQ1: Identifying Step Inputs and Outputs with Individual Participants
The sensemaking loop is a “broad brush description” [48] of an expert’s cognitive process of
information transformation. The boundary of each step is not clear-cut and the expert might skip
steps. In order to support large-scale distributed sensemaking, a robust pipeline has to explicitly
represent each intermediate analysis result. Our first preliminary study sought to uncover the
information needs (Step Input) and intermediate results (Step Output) of each step when individual
analysts rigidly follow the sensemaking loop (RQ1).

We designed a series of prototype interfaces to sequentially guide individuals’ exploratory text
analysis and specified the intermediate analysis results at five different steps. These five steps were
based directly on the forward arrows in Pirolli’s sensemaking loop (labeled 2, 5, 8, 11, and 14 in
Fig. 2): 1) Search and Filter relevant documents; 2) Read and Extract key information pieces; 3)
Schematize information pieces into meaningful node-link graphs; 4) Build a Casewith graphs to form
hypotheses; and 5) Tell a Story with winning hypotheses in a narrative conclusion. The prototype
served as a common artifact that participants could jointly author [21]. Each step was comprised of
two information items (input data file and output answer sheet) and one task specification (Fig.
3). The input data file listed the contents of the input data. The output file was a blank sheet to
fill in. The task specification gave the task name, instructions, the name of available input, the
name of expected output, and the name of the next step. We designed the interfaces as lightweight
prototypes [28] in Google Docs and Google Slides. Each participant completed Step 1 through 5,
and then had the option to go back and refine their intermediate analysis in a second path edit.
Participants attempted to solve mysteries using easy, moderate, and difficult data sets.

Provenance. Several participants found some of the sensemaking steps unnecessary when solving
the easy mystery, while others appreciated the step-by-step pipeline to organize their thoughts
and consolidate their analyses. All participants solving the difficult mystery needed to go back
and refine their previous step output. Most participants added more documents and information
pieces (Fig. 4), and modified their original node-link graphs (Fig. 5, left) after finishing the first path.
They found the modularized steps helpful to keep track of their analysis process, and to trace back
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Fig. 4. Intermediate analysis results by individual participants in Steps 1 and 2. Blue bars are their initial
results, green bars are their second path edits, and orange bars are correct answers contained in each
participant’s results.

Fig. 5. Example schemas created by individual participants (left) and crowd workers (right) in the preliminary
studies.

and improve certain intermediate results when refining their final conclusion. Lesson: Modularized
steps with clearly defined intermediate analysis results help ensure analysis credibility and support
backtracking when refining the previous analysis.

3.2 RQ2: Distributing Input and Aggregating Output with CrowdWorkers
Given the Step Input and Step Output of each step, our second preliminary study explored how
to distribute the Step Input among crowd workers and aggregate local analysis results into Step
Output (RQ2). We deployed the same prototype interfaces on Amazon Mechanical Turk and added
separate input and output interfaces for each crowd worker. After each step, we manually copied
and pasted the crowd results to fill in the input interface for the next step.

Handoff Within Steps. We compared parallel and iterative human computation processes [40] for
crowd collaboration within the steps. We found that a parallel approach allowed crowds to search
and filter relevant documents (Step 1), but the same approach led to duplicated evidence extracted
from the documents (Step 2). Workers rarely revised previous schema or hypotheses created by
others and tended to create their own new ones (Steps 3, 4). However, they refined and improved
previous narrative conclusions written by other workers (Step 5). Lesson: A parallel process works
better for decision tasks, and an iterative process works better for information extraction and
synthesis tasks. When new structures are introduced to reorganize the current information (Step
3), previous analysis results become difficult to understand and build on.
Handoff Between Steps.We observed that crowds were most challenged to understand schemas

created by previous workers. The hypotheses these workers developed did not include key findings
from the schema (Fig. 5, right) or had wrong or contradictory information (Step 4). Lesson: The
node-link graph is difficult for later crowd workers to understand since it does not provide an
obvious starting point and represents many implicit, personal thought processes. We suggest a more
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Fig. 6. Example crowd worker interface for Step 4. On the top are task instructions including the global
context (first line), task overview (first paragraph), and action items (bullet points). On the bottom left is
one context slice as local task input (available material). On the bottom right is the local task output where
crowds fill in and submit their analysis.

effective approach to crowdsourced schematization is to use a less abstract and more well-defined
structure, such as workers assigning appropriate pre-defined tags to information pieces, which can
then be organized accordingly.

4 THE CROWDIA SYSTEM
Guided by the lessons learned from the preliminary studies, we refined our pipeline and implemented
a web-based application, CrowdIA, to automate its facilitation. Fig. 6 shows an example interface
from the system.

4.1 Implementation
CrowdIA is implemented with the Django web framework and deployed on the Heroku cloud
platform.

The back end is implemented in Python with a PostgreSQL database and uses the boto3 API to
communicate with MTurk. It is responsible for 1) partitioning current step input into context slices;
2) sending context slices and corresponding contents to the front end when a worker accepts a
task; 3) receiving and saving local task results (encoded as JSON strings) into the database when a
worker submits a task result; 4) keeping track of local task status by detecting submitted, returned,
or abandoned tasks; 5) aggregating local task results into Step Output; 6) keeping track of step
completion status; 7) transforming current completed Step Output into the next Step Input; and 8)
automatically releasing corresponding tasks to MTurk.

The front end is implemented with the Bootstrap UI framework in HTML, CSS, and JavaScript /
JQuery. It is responsible for 1) rendering the UI design; 2) supporting user interaction (e.g., when
extracting information pieces, a crowd worker is required to put the "who, what, where, when"
elements of an information piece into four separate blanks); 3) validating results to ensure work
quality; and 4) sending requests to the server to fetch task content and submit analysis results (via
AJAX and JSON strings).

In the following sections, we first explain the overall pipeline structure, and then focus on
describing the different input, output, context slices and aggregation mechanism of each step.
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Fig. 7. Modularized sensemaking pipeline. Step 1 searches external data sources for relevant documents. Step
2 extracts important information pieces from the relevant documents. Step 3 organizes information pieces
into profile schemas. Step 4 compares and merges schemas to develop hypotheses. Step 5 synthesizes the
best hypotheses as the final presentation.

4.2 Pipeline Structure and Step Definition
The CrowdIA pipeline is composed of five Steps, corresponding to the five data transformation
processes in the sensemaking loop [48]. Each Step is a dedicated module defined by Step Input and
Step Output (Fig. 2 right). Each Step Output equals the Step Input of the next Step.
Each Step Input is restructured and partitioned into multiple Context Slices, each of which is a

meaningful subset of Step Input and contains semantically cohesive data. The Context Slice Results
are aggregated into Step Output without further processing.
Each Context Slice is rendered in one or more Local Tasks, each of which will be assigned to

one crowd worker. The results of Local Tasks submitted by crowd workers contributes to Context
Slice Result via an Aggregation Mechanism. In this paper, we implemented two commonly used
aggregation mechanisms from the crowdsourcing community: majority vote and create-review [70].
The majority vote mechanism applies to rating, tagging, or voting tasks that are distributed in
parallel among workers (Steps 1, 3, 4). A Context Slice uses the answer chosen by most of the
workers (above a threshold) as the Context Slice Result. The create-review mechanism applies to
free-text input (Steps 2, 5). The first crowd worker creates a free-text answer (one information piece
or one narrative presentation); then, a second worker reviews and refines this result. The process
continues until no new revisions are made. A Context Slice uses the final unrevised answer as the
Context Slice Result. To ensure the quality of work, we ask crowds to provide brief explanations
of their choices for the majority vote tasks; for create-review tasks, we provide self-assessment
rubrics [18] below the free-text input boxes.

4.3 Step 1: Search and Filter
Step Input: All the raw text documents available for analysis.
Step Output: The subset of documents that are relevant to the global context.
Context Slices and Local Tasks: Each Context Slice contains n documents with shared entities,

which could potentially "connect the dots" among documents and help workers better determine
document relevance. Each Context Slice has no more than 600 words (2 minutes of reading for the
average adult) and is rendered in c ≥ 3 Local Tasks. Each crowd worker gives a relevance rating
and provides a brief explanation.

Aggregation Mechanism: Majority Vote.A document is considered relevant if a majority of workers
deemed it so. All relevant documents are put into the Output (Fig. 8).

4.4 Step 2: Read and Extract
Step Input: Relevant documents found in Step 1.
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Fig. 8. Step 1: Search and Filter. Crowds independently rate document relevance from 0 (completely irrelevant)
to 100 (completely relevant). Using a predefined threshold, each relevance rating is converted to a binary
vote. Documents with the majority vote will be passed to Step 2.

Fig. 9. Step 2: Read and Extract. CrowdIA groups documents with overlapping entities into context slices
of size n = 2 (A). The first batch of crowd workers extracts information pieces from context slices (B). The
information pieces are then regrouped by their source documents into new context slices (C). The following
batches of crowds review information pieces (D). The process continues until no new revisions are made.

Step Output: A set of information pieces comprised of the key entities in the relevant documents.
Context Slices and Local Tasks: Each Context Slice contains n documents and (if not the first

worker) information pieces extracted from the documents. For each Context Slice, c ≥ 2 Local Tasks
are rendered sequentially and the crowd workers extract or review the information pieces.

Aggregation Mechanism: Create-Review. Each Context Slice ends up with a list of final information
pieces. Notably, when context slices have overlapping documents, crowds can extract information
pieces that synthesize information from multiple documents. The disadvantage is that the same
information pieces could be extracted multiple times by different workers. The reviewing process
re-organizes information pieces by source documents into new context slices to help remove
duplicates (Fig. 9).

4.5 Step 3: Schematize
Step Input: Information pieces extracted in Step 2.
Step Output: Tags on information pieces that identify targets and form a categorical schema.
Context Slices and Local Tasks: Each Context Slice contains n information pieces and is rendered

in c ≥ 3 Local Tasks, where each crowd worker fills in one free-text target and selects one or more
predefined tags independently. The free-text target identifies candidates for the unknown element
of the global task (e.g., potential target locations of a terrorist attack, or the suspect in a murder
case). The predefined tags link each information piece to the known elements of the global task.
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Fig. 10. Step 3: Schematize. Crowds identify potential target locations and tag the information pieces with
known elements. Information pieces are tagged with tags that earned the crowd’s majority vote and organized
into profiles of the candidate targets.

Inducing structure from new data with distributed crowds is a challenging problem [1, 9, 35].
In CrowdIA, predefined tags depend on the types of data and known facts. For example, we used
"means," "motive," and "opportunity" tags for the moderate dataset because these three categories
are common practices in determining the suspect in a criminal case. In the difficult dataset, we used
all known elements as predefined tags because the target location is assumed to have the highest
number of abnormal activities.
Aggregation Mechanism: Majority Vote. Tags that received a majority vote are retained for the

information pieces in each Context Slice. Each free-text target has at least one information piece
which also has at least one predefined tag. This creates a profile for each target candidate, which
marshals the relevant information pieces into a tabular structure according to the predefined tags
(Fig. 10). For example, each murder suspect’s profile organizes all of their means, motive, and
opportunity evidence.

4.6 Step 4: Build Case
Step Input: Target profiles containing information pieces tagged from Step 3.
Step Output: Preliminary hypotheses developed by comparing the target profiles.
Context Slices and Local Tasks: Each Context Slice contains n profiles and is rendered in c ≥ 3 Local

Tasks. Each crowd worker selects the most likely candidate or (in the case of aliases) declares them
identical and provides a brief explanation. As a proof-of-concept, we adopt the single elimination
tournament among candidates [23], each competition being a Context Slice. Profiles are initially
ranked by the number of tags and information pieces (Fig. 11).
Aggregation Mechanism: Majority Vote. For each Context Slice, the profile with majority vote

enters the next round of comparisons until only one profile is left.

4.7 Step 5: Tell Story
Step Input: The best preliminary hypotheses from Step 4.
Step Output: A narrative conclusion backed up by supporting evidence.
Context Slices and Local Tasks: Each Context Slice contains n profiles and is rendered in c ≥ 2 Local

Tasks sequentially. Crowds write and review a narrative that integrates the profile information
into a complete story (Fig. 12). In our experiments with one missing element (person or location),
only the winning profile is considered the Step Input, so there is not really a need for a Context Slice
when n = 1.

Local Task Aggregation Mechanism: Create-Review. Each Context Slice ends up with a reviewed
presentation, which is also the output of the entire pipeline.
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Fig. 11. Step 4: Build Case. Crowds compare candidate profiles and merge aliases. As in a single-elimination
competition, workers in Step 4 rank candidates by their perceived likelihood of being the target location.

Fig. 12. Step 5: Tell Story. Crowds put together the information in the winning profile and write a complete
narrative. The presentation is ready when no new revisions are made.

4.8 Refining Path: Top-Down
When the final presentation does not meet the expectation of clients, we need to refine the previous
analysis. Furthermore, complex sensemaking like intelligence analysis is never fully complete, but
rather becomes more valid with the available evidence [12]. As the analysis proceeds, new insights
and lines of inquiry may arise. These issues motivate the needs to refine the previous intermediate
analysis with the new knowledge learned and any feedback provided by clients.

There are two questions to ask before triggering the refining path: 1) What are the problems with
the current analysis, and 2) From which steps did the problems originate? The first question decides
if a refining path is needed, and the second question decides where and how the intermediate
analysis should be refined. A reasonable start could be to ask an expert to review the current
pipeline result, locate problematic intermediate results, and provide feedback for the corresponding
step. It is also worth exploring how crowds can be leveraged in answering the two questions.
Once the step is identified and feedback is provided, new context slices are needed for crowd

workers to address the feedback. We designed a feedback format with three elements: context
(where is the problem), critique (what is the problem), and task specification (what is needed to fix
the problem). The new Context Slices contain the formatted feedback and a subset of Step Input
that produced the feedback context. Each Context Slice is then rendered in local tasks similar to the
bottom-up path. Each crowd worker first evaluates whether the feedback can be addressed with
the given material, then submits an explanation of why not or new results to address the feedback.
The new results are aggregated into a refined Step Output. If the new Step Output is different from
the previous one, the subsequent steps will be re-executed with the new analysis. Otherwise, the
expert will need to find another previous step to fix.
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5 EVALUATION: SOLVING MYSTERIES WITH CROWDS
To evaluate the feasibility of the pipeline, we deployed CrowdIA on Amazon Mechanical Turk
(MTurk) and asked crowdworkers to solve three mysteries of increasing difficulty levels. To evaluate
the quality of crowd analysis with CrowdIA, we compare the conclusions by crowds to the correct
answers of the mysteries. In this paper, we focus on evaluating the bottom-up forward pipeline,
leaving experiments with the top-down refining path for future work.

5.1 Method
We recruited participants fromMTurk US-only pool and paid at least minimumwage in our location
($7.25 per hour). Based on the time the individuals and crowds spent in the preliminary studies,
as well as the effects of queuing and/or idling tasks, we determined the time needed to complete
local tasks in each step as: Step 1: 1.7 min, Step 2 extract: 2.8 min, Step 2 review: 2.5 min, Step 3: 1.6
min, Step 4: 3.3 min, Step 5 create and review: 2.2 min. Consequently, to ensure at least minimum
wage, we provided the following payments for the local tasks: Step 1: $0.20, Step 2: $0.34 and $0.30,
Step 3: $0.19, Step 4: $0.40, Step 5: $0.24 and $0.24. CrowdIA posts each step on MTurk as a Human
Intelligence Task (HIT) that dynamically renders the context slices and assigns a worker to each
slice. We assign each worker to only one context slice of one step to demonstrate the capability
of distributed novice crowds to solve mysteries and mitigate learning effects or collusion. Crowd
workers who quit an accepted HIT without submitting it were not allowed to resume the unfinished
work or take a new HIT.

We evaluate our pipeline with easy, moderate and difficult datasets (for details on the datasets,
see Appendix A). We consider datasets with more documents, more elements (who, what, where,
when) and more complicated relationships among elements to be more difficult.

5.2 Results of Easy Dataset
The easy dataset contains three documents about three girls who might have ruined Mr. Potter’s
flowerbed [17]. The crowd workers successfully found the culprit and presented their conclusion
with supporting evidence.

We recruited five crowd workers, each working on one step in the pipeline. The first worker
took 34 seconds to find the two relevant documents, the second took 12.5 minutes and extracted 10
important information pieces, the third took 22.7 minutes and organized the information pieces
into four groups, the fourth took 10.1 minutes and generated three hypotheses for each suspect,
and the fifth took 5.7 minutes to pick the most likely culprit, offering the following conclusion:

I think it was Serina who had the muddy shoes after playing hopscotch. Her shoes were
muddy so that could indicate that she went into the just watered flower bed. Maybe
she only ran through it to get to her friends so they could play but she might have
stomped on the flowers on her way to the play area. She was in a hurry and not paying
attention to what she was doing.

Detailed crowd analysis results for the easy dataset are presented in Appendix B.

5.3 Results of Moderate Dataset
The moderate dataset, inspired by the popular Clue board game, has nine documents; three suspects
with different means, motives, and opportunities to kill Mr. Boddy; and four witnesses. The crowds
successfully identified the murderer and backed up the conclusion with supporting evidence.

We recruited a total of 76 crowd workers to analyze the dataset. In Step 1, 27 workers found seven
relevant documents and excluded the two documents about wrong means and wrong opportunity
of the two wrong suspects (time spent in minutes: mean=5.8, median=2.9, std=8.78). In Step 2,
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14 workers extracted eight information pieces, of which seven were important (time spent on
creation tasks in minutes: mean=10.7, median=4.6, std=18; time spent on reviewing tasks in minutes:
mean=7.6, median=3.81, std=9.61). In Step 3, 24 workers tagged the seven important pieces with
person names and means / motive / opportunity evidence type, whereas the useless information
piece received a None tag (time spent in minutes: mean=7.7, median=3.5, std=12.79). One of the
witnesses also got tagged as a potential suspect, resulting in four profiles. In Step 4, nine workers
weighed the suspect profiles in the single elimination tournament and Scarlett was deemed the
most likely murderer (time spent in minutes: mean=13.0, median=7.2, std=14.92). Finally, in Step 5,
2 workers narrated the conclusion (creating worker took 23.7 minutes, reviewing worker spent
2.05 minutes):

Miss Scarlet killed him [Mr. Boddy]. She was seen at Mr Boddy’s house on the night of
his death. She also had the murder weapon seen by her trainer in her bag. Also, she
had the motive since she would inherit his estate.

Detailed crowd analysis results for the moderate dataset are presented in Appendix C.

5.4 Results of Difficult Dataset
The difficult dataset is part of the Sign of Crescent dataset [32] used as training material for
professional intelligence analysts. We streamlined the Crescent dataset to only cover one terrorist
plot, added extra documents as noise, and specified the goal as identifying the target location of
the attack. There are 13 documents, four terrorists, and 12 locations mentioned in the documents.

We recruited a total of 135 crowdworkers: 18 workers in Step 1 (time spent in minutes: mean=10.9,
median=4.3, std=15.6), 22 workers in Step 2 (time spent in minutes: mean=17.3, median=10.7,
std=17.2), 78 workers in Step 3 (time spent in minutes: mean=12.1, median=3.1, std=16.0), 15
workers in Step 4 (time spent in minutes: mean=9.9, median=7.3, std=9.0), and two workers in Step
5 (creating worker took 47.4 minutes, reviewing worker spent 1.5 minutes).

Echoing the results from our preliminary study, the crowd workers were one step away from the
actual target location New York Stock Exchange. However, they found the weapon storage location
North Bergen, New Jersey and ranked New York Stock Exchange as the second possible target.
Below, we examine the crowds’ performance in detail.

Step 1: Crowd successfully retrieved indirectly relevant documents. In Step 1, seven doc-
uments out of 13 directly mentioned one or more key elements and are automatically considered
relevant. The remaining six documents (three indirectly relevant and three irrelevant) are each
rated by three crowd workers on a 0–100 scale. The crowds found four relevant documents (with
one extra irrelevant document) from the six documents with a threshold of 50, resulting in 11
relevant documents. A follow-up analysis found that thresholds ranging from 30 to 60 would lead
to the same result, with lower thresholds increasing false positives and higher ones increasing false
negatives. Thresholds 0–10 would include all three irrelevant documents, 15–25 would include
two irrelevant documents, 65–70 would include one irrelevant document and miss one relevant
document, 75 would include one irrelevant document and miss two relevant documents, and above
80 would not include irrelevant documents but miss three relevant documents.

Step 2: Crowd extracted most key useful information pieces. In Step 2, a total of 26 infor-
mation pieces were extracted from the documents, of which 18 were useful ones. The information
pieces cover key evidence about terrorists’ real names and aliases, phone calls, and the bomb and
the storage location. We found that the crowds were able to synthesize information across two
documents, viz.: "Hani al Hallak’s carpet shop in North Bergen caught fire" and "Police found C-4
explosives in the carpet shop reported on fire in North Bergen" were extracted as one information
piece: "Hani al Hallak’s carpet shop has C-4 explosives." The crowd’s review process solved issues
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like misspellings, incomplete name references, missing elements (who, what, where, when, etc.),
and duplicates.
On the other hand, not all important information pieces were extracted. One important infor-

mation piece showing that one of the terrorists works in the actual target location did not get
extracted. Some information pieces about the relationships and roles of terrorists also did not get
extracted. The missed activities were cover-ups of terrorists and not obvious to an early-stage
investigation. These issues could be improved by re-executing Step 2 with additional feedback.

Step 3: Majority vote elicits accurate tagging and potential target identification. After
Step 3, 18 of the 26 information pieces were tagged, excluding the four information pieces from
the irrelevant document. Following the majority vote aggregation, all information pieces were
accurately tagged with the key evidence.

We closely examined the tags and found that individual crowdworkers tended to give information
pieces more tags than strictly needed. Some workers just selected every tag and others selected
nothing when they could not identify any locations. The majority vote mechanism helped eliminate
the influence of such low quality work and only kept the accurate tags.
Five location tags were created. One notable development was that two different workers both

identified a location "Tel Aviv" in the information piece: "I will be in my office on April 30 at 9:00AM.
Try to be on time." One of the workers even gave very specific information: "the location is Israel
at Mike’s Place, a restaurant in Tel Aviv." We later learned that there was a real Palestinian suicide
attack perpetrated by British Muslims which killed three civilians and wounded 50 at Mike’s Place
in Tel Aviv on April 30, 2003, the same timeframe as the dataset. Although crowds were instructed
not to add extraneous information, these two workers aligned the information in the given context
slice with their external knowledge and mental model.

Step 4: Crowd logically reasoned and weighed hypotheses. The ranked location tag results
are shown in Fig. 11. The final winning location was North Bergen, New Jersey, the last place the
bomb was stored before transferred to the target location. The runner-up, losing by only one vote,
was the correct answer, New York Stock Exchange. Even though the crowd narrowly missed the
actual target, the winner is the second-most crucial location to investigate. The correct answer,
New York Stock Exchange, was merged with another location, New York, and won one of the
competitions with insightful explanations by workers:

The New York Stock Exchange is a specific, high value target for terrorists because a
bomb attack there would likely cause many casualties and have a negative effect on
the US economy. Springfield, VA is a very broad target and besides the fact that one of
the terrorists lives there there isn’t much evidence than an attack will take place there.
— Worker 1, New York Stock Exchange vs. Springfield, VA (Round 2)
There are multiple pieces of evidence showing suspicious activity centered on the
NYSE. There’s just one pieces of evidence pointing to Springfield, and it’s just that a
suspect lives there, there’s no real evidence he’s doing anything there.
— Worker 2, New York Stock Exchange vs. Springfield, VA (Round 2)

Unfortunately, New York Stock Exchange lost in the final competition with North Bergen, New
Jersey, where the terrorists store the bomb in a carpet store before transferring it to New York.
However, the explanations were not as insightful or convincing, e.g.:

They found an actual C4 in New Jersey, which makes me believe that was more likely
meant to be the target.
— Worker 3, New York Stock Exchange vs. North Bergen, New Jersey (Round 2)

Step 5: Crowd wrote a clear narrative presentation. Using the profile of North Bergen, New
Jersey, workers from the last step created a narrative that connected the evidence to current findings
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and justified the likelihood of this place being a potential target. The final presentation created by
the crowds was: "Hani al Hallak placed a C-4 plastic explosive bomb and set up a fire in his carpet
shop in North Bergen in the early morning hours of April 26, 2003."

6 DISCUSSION
6.1 RQ1: How can we modularize the sensemaking process?
Analysis provenance enables step-wise debugging of the sensemaking process. Modularizing the
sensemaking steps with explicit definitions of information needs (inputs) and intermediate analysis
results (outputs) enables step-wise debugging and refinement, breaking down a big black box into
smaller, more inspectable modules. For example, when the crowds analyzed the difficult dataset,
they failed to extract some important information pieces (false negatives) in Step 2. This resulted
in incomplete profiles of the potential target locations, which we believe led to the narrow miss
of the correct target. By examining the intermediate analysis results, either experts or crowds
could have potentially debugged the situation and refine the analysis in a top-down refining path
(as in Figure 7). In future work, experts could manage the execution of the pipeline, similar to
CrowdWeaver [34], and provide structured and situated feedback [38] for crowd workers to refine
previous analyses. Alternatively, crowds themselves could critique and refine intermediate analysis
results in a feedback pass. In prior work, crowds have been used to provide feedback [42, 66] on
visual designs, accurately evaluate each other’s credibility [62], and react to personalized expert
feedback while brainstorming [8].

Modularization enhanced scalability, resusability of analysis, and efficient division of labor.CrowdIA
enabled as many as 134 transient novice crowd workers to collaborate to solve a difficult mystery,
producing high-quality, insightful analysis output. The same number of people working together
in a collocated way would be a big challenge to coordination and communication. Getting the same
number of trained analysts working at the same time would be even more difficult. CrowdIA’s
automated facilitation mitigates logistics burdens, enabling workers to invest their time and efforts
in the core analysis tasks. Later crowd workers continued the analysis from where previous workers
left off, without requiring the previous workers to explain their intermediate results or thought
processes. Furthermore, CrowdIA did not require crowds to have significant sensemaking expertise.
Workers were all novices and transient, without prior exposure to the dataset, and giving only a
small time commitment (typically a few minutes) each. These features can open up the sensemaking
process to dynamically recruit from a much bigger pool of contributors.

Alternative strategies to schematize information. Steps 3 and 4 could be modified to support many
different types of schemas. Different structures could be helpful for different types of analyses [22].
A node-link graph structure is very general to capture many types of relationships in the data, but
can be difficult to hand off during collaboration [69]. CrowdIA implemented a more specific tabular
structure to represent suspect profiles, which resulted in accurate hypotheses.

In CrowdIA, we implemented both location-centered (difficult mystery) and person-centered (easy
and moderate mysteries) profile schema strategies. Alternative methodologies, such as analysis of
competing hypotheses (ACH) [31], could also be applied. We found that an effective strategy is to tag
information with appropriate categories with which the information pieces can be organized from
different perspectives. This strategy is simple for novice crowd workers and highly scalable. Future
work can also explore a data-centric approach by inducing tags directly from the documents [1, 35].

Optimizing each step with best-suited techniques. The modular design can support future research
on optimizing each step of the pipeline as well as the overall workflow. For information foraging
stages (Step 1 and 2), advanced algorithmic techniques [51, 59] can be leveraged to improve efficiency.
Crowds can focus on edge cases where machine learning models do not perform well [9], which in
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Step Context Slicing Goal Context Slices Alternative Slicing Methods
1 Provide context to define

relevance
Documents that share enti-
ties

Documents of the same topic,
sources

2 Provide context to complete
missing parts of facts

Information pieces from the
same source documents

Information pieces created by the
same people, date

3 Provide context to identify
evidence type

Information pieces that
share entities

Information pieces with similar re-
lationship types, connotation

4 Provide context to combine
and/or compare schema

Profiles of suspects orga-
nized by evidence types

Evidence types organized by date,
location

5 Provide context to back up
each hypotheses statement

Most likely suspect and
complete profile

Strongest suspects for each evi-
dence

Table 1. Customized context slicing of each step depends on the level of analysis and the goal of the step.

turn helps train the machine learning models. For information synthesizing tasks, crowds are better
suited than algorithms and have shown success in other applications [29, 43]. More complicated
approaches like online contest webs [43] can be applied to guide the crowds to build hypotheses.
Experts can also take over whenever they deem it appropriate.

6.2 RQ2: How do we distribute and aggregate the analysis in each step?
Decomposing a big problem into small manageable problems has been a major challenge for the
crowdsourcing community. To make sense of large amounts of data, many solutions employ a single
step for sensemaking and distributing the work by 1) showing each worker all the data, 2) showing
each worker one piece of data, or 3) showing each worker an arbitrary subset of data. All such
microtasks are linearly defined, similar to how we divide the documents in the first step. Instead of
naively passing uniform local tasks from Steps 1 to 5, we create Context Slices that divide each Step
Input into cohesive subsets, and aggregate the Context Slice Results into Step Output (which is also
the next Step Input), before creating new context slices.
Context slices enable meaningful and scalable division of work. Although the steps in the sense-

making pipeline were already modularized for experts, our concept of Context Slices partitions the
each Step Input so that novice crowd workers can contribute meaningfully. Context Slices enable
workers to generate meaningful results that synthesize information beyond what can be extracted
from a single piece of information or an arbitrary subset of information. For example, in the first
step of solving the difficult dataset, when given a context slice containing one directly relevant
document and one unrated document with shared entities, the crowds were able to identify other
indirectly relevant documents. Without context slices, workers in the preliminary study were not
able to identify these indirectly relevant documents.
Context slice design depends on data and differs among steps. An open challenge is that context

slicing methods must be carefully designed for each step. CrowdIA implemented customized context
slicing methods for each step in the pipeline (Table 1). We specify the context unit (how the slices
are defined) according to the level of analysis in each step: documents, information pieces, and
profiles, and the context slicing goal (how the slices are determined) according to the step goal.
Exploring the trade-off between the size of context slices and the quality of local task output, and
exploring alternative context slicing methods, are both promising directions for future work.

6.3 RQ3: How do crowds perform in solving mysteries with the modularized pipeline?
Handling false positives and false negatives. Crowds handled false positives within the pipeline. For
example, in the difficult dataset, crowds included one irrelevant document (a false positive) in Step
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1, which propagated the useless information to later steps. However, Step 3 guaranteed that only
useful information pieces are tagged with evidence types and put into profiles of candidates. Thus,
the useless information was filtered out in Step 3. The pipeline was able to recover from the false
positive and save worker labor in later steps.
We did not encounter false negatives in Step 1 with a rating threshold of 50. In general, the

trade-off between false positives and false negatives could potentially be controlled by the rating
thresholds [39]. We encountered false negatives in Step 2, where the crowds failed to extract all the
relevant information pieces. The bottom-up pipeline alone did not recover from the false negatives.
Future work on the top-down refining path could help resolve false negatives.
Crowds used external knowledge in information foraging.We found that sometimes crowds con-

nected their own knowledge to the dataset. In Step 3, the workers created a location tag "Tel Aviv"
which is not mentioned anywhere in the documents. This connects the information from the
documents under investigation to external knowledge from the crowds. Despite our assumption
(Appendix D) that no external knowledge is needed to solve these mysteries, the wisdom of crowds
potentially broadens the coverage of the investigation.
Crowd explanations provided diverse perspectives in information synthesis. In the synthesizing

stages (Steps 3–5), we found that the crowds provided diverse perspectives. When comparing
suspects in the moderate dataset, one crowd worker chose the wrong suspect (Professor Plum
instead of Miss Scarlett), and provided the explanation: "To cut a man’s throat you would need
to be at least as strong as him, I don’t think women in general have the same sort of physical
power as men, therefore I don’t think Miss Scarlet had the physical strength to overpower Mr.
Boddy and cut his throat..." Although this hypothesis does not align with the correct answer,
real-world investigation can benefit from such insights for further data collection and analysis.
Further exploration on collecting, structuring and making use of crowd explanations would be
valuable future work.

6.4 Generalizability
We chose to deploy our pipeline to solve intelligence analysis mysteries because they exemplify
the challenge of exploratory analysis: building robust and logical hypotheses from known facts
to achieve a final conclusion as close to the hidden truth as possible. However, we envision the
pipeline as adaptable to broader applications with different sensemaking challenges, as well as
opening up more in-depth research within each step.

Broader applications beyond intelligence analysis. The general class of "mysteries" CrowdIA may
help solve is potentially broad, including investigations in law enforcement, journalism, and human
rights advocacy. However, we also expect that our pipeline can be adapted for other sensemaking
tasks and domains. While future work is needed to understand the trade-offs, we anticipate that
our approach will translate most directly to sensemaking tasks that involve uncovering hidden
patterns or relationships among many text-based documents, such as coding qualitative data [1]
or synthesizing creative ideas [7]. Our approach may also be suitable for sensemaking tasks that
incorporate personal preferences, such as trip planning [68], online shopping [35], or researching
home improvement solutions [29], because our pipeline already assumes iterative cycles of client
feedback and revision. Finally, our approach may support crowdsourced sensemaking to generate
hypotheses of biological and environmental phenomena [41, 46]. For these latter problems, it may
be necessary to modify CrowdIA’s steps to better align with the scientific method rather than the
sensemaking loop of intelligence analysts.
Flexible crowd compositions and collaboration settings. A major constraint of using crowds on

MTurk is that workers are transient and novices. This serves well for our purpose as a proof-of-
concept, but in real-world intelligence analysis, the crowd’s analysis may serve as an assistance
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to experts. When solving the difficult dataset, crowds were able to prune the noisy information
from the documents without much loss of important information. Expert analysts could focus on
the pruned information for more advanced analysis. Along with being a more efficient division of
labor, this approach also allows for professional oversight, preventing novice crowds from jumping
to wrong conclusions that can result in harmful consequences.

When confidentiality is a concern, one possibility is to incorporate task assignment techniques for
sensitive documents [6], but these may limit workers’ access to global context and degrade quality.
Another possibility is to use a trusted internal group who can access the confidential documents
when collocated, synchronous, devoted experts are not available. Many data management businesses
already employ or have access to such internal worker pools [44].

6.5 Limitations and Future Work
In this paper, we focused on first establishing a proof-of-concept pipeline that orchestrates crowd-
sourced sensemaking, and then investigating how well the pipeline can facilitate novice asyn-
chronous distributed crowds in solving mysteries. However, we did not empirically compare our
approach to other sensemaking techniques or systems. Future evaluation studies could compare
CrowdIA’s highly structured process to more free-form approaches (e.g., [26, 55]) to articulate the
trade-offs of exploiting Pirolli and Card’s sensemaking structure. Comparing to alternative data
slicing techniques, such as 1) extreme slicing, in which each worker gets only one document and
votes for the likely target based entirely on local information; or 2) no slicing, in which each worker
sees all the documents and attempts to solve the mystery, could suggest pipeline modifications
that enable greater flexibility in worker time commitments and microtask granularities. CrowdIA’s
modular approach also suggests opportunities to experiment with alternative task designs for
specific steps within the proposed pipeline, using this paper’s configuration as the baseline, similar
to the experimental framework organized by Parikh et al. [47] for computer vision research.
A challenge in conducting controlled studies of CrowdIA is cost. Running the pipeline to solve

the moderate and difficult mysteries required approximately 100 crowd workers and cost $50
per execution. Although other crowd-based systems, especially those requiring workers with
specialized expertise, can be much costlier [29, 43, 57], CrowdIA executions will become more
expensive as the mystery gets more complicated, to compensate the increasing numbers of workers.
Alternatively, researchers could leverage public enthusiasm for solving mysteries [45] to recruit
volunteer crowds. These self-selected participants may bring more dedication and expertise to the
problem, but may be less motivated by the artificial data sets common to controlled experiments.
To manage the scope of the problem, we enforced some key assumptions (see Appendix D) on

the initial data input and the final result output associated with the target mysteries. Further field
research is needed to understand how to relax these assumptions when applying the pipeline to
more complex, real-world mysteries.

7 CONCLUSION
In this paper, we proposed a modularized pipeline that guided crowds to collaborate on solving
mysteries. With clearly defined inputs, outputs, and context slicing methods for each step, crowd
workers on MTurk successfully undertook the entire sensemaking process and solved mysteries of
increasing difficulty levels. We implemented the pipeline as CrowdIA, a web-based crowdsourcing
system that provides automated facilitation of the sensemaking process for novice transient crowd
workers. Our pipeline enables research on different sensemaking steps to be dynamically plugged
in and tested, thereby coordinating large-scale efforts from the sensemaking research community.
Our hope is that this pipeline will serve to accelerate research on sensemaking, and contribute to
helping people conduct in-depth investigations of large collections of information.
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Document 1 Document 2 Document 3
One hot, dry day Neva saw
Mr. Potter shaking his head
as he stood by his flowerbed.
"Somebody ruined all my
flowers," he said. "I had
the hose out watering them.
When I went to put it away,
somebody tromped through
the rows and stomped on my
flowers." "Who’d do a mean
thing like that?" Neva asked.
Mr. Potter sighed. "Some-
body who likes mischief, I
guess." "I’m walking to the
mall now. Maybe later I can
find out who did it," Neva
told him.

On Neva’s way to the mall,
she saw three girls playing
hopscotch. She decided to
stop and watch how expertly
they moved over the chalk
marks. Lucy had to hop very
carefully because one of the
straps was broken on her left
sandal. Cathy hopped slowly.
She wore purple sneakers
that looked worn-out. Cathy
seemed worn-out, too. Se-
rina hopped the fastest. The
muddy soles of her white
jogging shoes hardly seemed
to touch the sidewalk as she
moved.

Ada Peterson is a graduate
student in ABC Tech. She
went on a vacation to Yel-
lowstone National Park this
August with her family. She
spent 3 days at her cousin
Elaine’s house in Los Ange-
les before that. She spent a
week there, and before she
came back to school on Aug
28th, she went to Utah for 2
days to visit her old friend
Cindy.

Table 2. Easy dataset adapted from a brain teaser. The correct answer is that Serina is the culprit.

A DATASETS
Given the complexity of the entire sensemaking process, we evaluate our pipeline with simplified
datasets in three levels of difficulty. Dataset with more documents, more elements (who, what,
where, when) and more complicated relationships among elements are considered more difficult.

The easy dataset is adapted from one of the brain teasers from Braingle [17], the answer being
Serina is the culprit. There are two relevant documents: Document 1 introduces the background
setting and Document 2 lays out the suspects and information about them. We added a third
irrelevant document as noise, and masked the original names to prevent crowds from finding
the solution online. There are 227 words in all three documents, with 162 words in the two key
documents (Table 2).
The moderate dataset is adapted from the popular board game Clue, where there is a limited

number of suspects (who), weapons (what), locations (where), and one known murder time (when).
We picked three suspects, two weapons and three locations in the whole dataset (Table 3), and the
correct answer being Miss Scarlett killed Mr. Boddy (victim) in his kitchen with a knife, because she
will be bequeathed with the large estate after his death.
The difficult dataset is part of the Sign of Crescent dataset [32]. It is used as a training material

for intelligence analysts. There are 41 fictional text intelligence reports about three coordinated
terrorist attack plots in three US cities. Each plot involves a group of at least four suspicious people.
And each report document contains a single prose paragraph of 33 to 210 words (Fig. 4). We took
nine of the documents that contain evidence of one of the attack plots: A C-4 plastic explosive
bomb, will be detonated at 0900hrs on 30 April,2003, by Hamid Alwan [alias Mark Davis] in New
York Stock Exchange. Support Hamid with money and bomb storage and transportation is a group of
terrorists: Muhammed bin Harazi [alias Abdul Ramazi], Hani al Halak, Sahim Albakri [alias Bagwant
Dhaliwal]. We added two irrelevant documents as noise.
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Evidence Miss Scarlett* Prof. Plum Reverend Green
Means has knife handgun (wrong

weapon)
has knife

Motive inherit victim’s prop-
erty on his death

wife has affair with
victim

victim stole money
from their business

Opportunity visited victim’s house car driving past
(wrong location)

phone call (wrong lo-
cation)

Table 3. Moderate dataset skeleton adapted from the card game Clue.

Report Date 14 April, 2003. CIA:
From an interrogation of a cooperative detainee in Guantanamo. Detainee says he
trained daily with a man named Ziad al Shibh at an Al Qaeda explosives training
facility in the Sudan in 1994. From a captured laptop computer in Afghanistan it is
learned that Ziad al Shibh holds a United Arab Emirates passport in the name Faysal
Goba. INS check reveals that a Faysal Goba, from the United Arab Emirates, entered
the USA on a travel visa in January of 2003 stating that he would be visiting a person
named Clark Webster in Richmond, Va. The contact address given by Goba was: 1631
Capitol Ave., Richmond VA; phone number: 804-759-6302.
Report Date 27 April, 2003.
Intercept of cell phone 804-774-8920. In a very brief call from this number to phone
number 703-659-2317 on 26 April, 2003, the caller speaks in Arabic. A translation
reads: "We are now prepared to take the crescent to victory".
Table 4. Example documents from the difficult dataset adapted from The Sign of the Crescent.

B CROWD ANALYSIS OF EASY DATASET
Step 1: The crowds successfully identified that Document 1 and Document 2 are relevant.
Step 2: The information pieces extracted by the crowds are:
(1) Neva witness Mr. Potter shaking his head by the flowerpots.
(2) Mr. Potter claimed someone ruined his flowers by stomping on them after he watered them.
(3) Neva wondered who it was.
(4) Mr. Potter didn’t know but guessed it was for mischief’s sake.
(5) Neva said he might help figure it out later.
(6) On that day, Neva saw three girls playing hopscotch and watched them.
(7) Lucy had a broken strap on her left sandal.
(8) Cathy looked worn out and her shoes were worn too.
(9) Serina was fast but had muddy shoes.
(10) Any of these three girls could be the culprit.
Step 3: The schemas organized by crowds are:

Group 1: Possible suspects
6. On that day, Neva saw three girls playing hopscotch and watched them.
7. Lucy had a broken strap on her left sandal.
8. Cathy looked worn out and her shoes were worn too.
9. Serina was fast but had muddy shoes.
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10. Any of these three girls could be the culprit.

Group 2: Evidence Mr. Potter’s flowerpots were destroyed
1. Neva witness Mr. Potter shaking his head by the flowerpots.
2. Mr. Potter claimed someone ruined his flowers by stomping on them after he watered
them.

Group 3: Reflections
3. Neva wondered who it was.
4. Mr. Potter didn’t know but guessed it was for mischief’s sake.
5. Neva said he might help figure it out later.

Group 4: Could be Neva
4. Neva said he might help figure it out later.

Step 4: The hypotheses developed in Step 4 are:
Hypothesis 1, Group 1, 2, & 3: Mr. Potter’s flowerpots were destroyed and claimed someone

ruined his flowers by stomping them. Neva saw three girls playing hopscotch and noticed that
one girl, Lucy had a broken strap on her sandal. It is likely that Lucy stomped on the flowers and
in doing so her strap on her left sandal caught on something and broke, or from the force or her
action that is how the flowers were ruined.
Hypothesis 2, Group 1, 2, & 3: Mr. Potter’s flowerpots were destroyed and claimed someone

ruined his flowers by stomping them. Neva saw three girls playing hopscotch and noticed that one
girl, Cathy looked exhausted and had worn out shoes. Cathy looked so worn out due to the fact
that she ruined Mr. Potter’s flowers and ran off in a rush as to not get caught
Hypothesis 3, Group 1, 2, & 3: Mr. Potter’s flowerpots were destroyed and claimed someone

ruined his flowers by stomping them. Neva saw three girls playing hopscotch and noticed that one
girl, Serina was very agile in playing hopscotch and had muddy shoes. Since Mr. Potter had just
watered his flowers the soil would have been moist/damp and it makes sense that Serina ruined his
flowers and ran back to her friends to play with them which is why her shoes are muddy

Step 5: The final presentation by crowds is:
I think it was Serina who had the muddy shoes after playing hopscotch. Her shoes were muddy

so that could indicate that she went into the just watered flower bed. Maybe she only ran through
it to get to her friends so they could play but she might have stomped on the flowers on her way to
the play area. She was in a hurry and not paying attention to what she was doing.

C CROWD ANALYSIS OF MODERATE DATASET
Step 1: The crowds identified all documents about Miss Scarlett, documents about Prof. Plum’s

motive and wrong location, and Reverend Green’s means and motive as relevant, i.e. all relevant
documents were retrieved, one irrelevant document was retrieved (precision=85.7%, recall=100%).

Step 2: The information pieces extracted by crowds are:

(1) Miss Scarlett visited Mr. Boddy’s house on the night of his death to return some books
(2) Miss Scarlett will inherit Mr. Boddy’s large estate in the event of his death as Mr. Boddy’s

niece and nearest living relative
(3) Miss Scarlett’s personal trainer Roger saw an ivory-handled fold-up knife in her gym bag a

month ago, but she told police she has lost the knife several weeks ago.
(4) Professor Plum didn’t know that his wife Linda had been having an affair with Mr. Boddy
(5) Professor Plum’s car was seen driving past Mr. Boddy’s house on the night of his death
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Miss Scarlett Prof. Plum Reverend Green Roger
Means Miss Scarlett’s

personal trainer
Roger saw an
ivory-handled
fold-up knife in
her gym bag a
month ago, but
she told police
she has lost the
knife several
weeks ago.

Reverend Green
kept a black
utility knife in
his pocket, but he
told authorities
that the knife had
broken months
ago and he had
discarded it.

Miss Scarlett’s
personal trainer
Roger saw an
ivory-handled
fold-up knife
in her gym bag
amonth ago, but
she told police
she has lost the
knife several
weeks ago.

Motive Miss Scarlett
will inherit Mr.
Boddy’s large
estate in the
event of his death
as Mr. Boddy’s
niece and nearest
living relative

Professor Plum
didn’t know that
his wife Linda
had been having
an affair with Mr.
Boddy

Reverend Green
suspected Mr.
Boddy had stolen
money from the
failed business
they had together
several years ago

Opportunity Miss Scarlett vis-
ited Mr. Boddy’s
house on the
night of his death
to return some
books

Professor Plum’s
car was seen
driving past Mr.
Boddy’s house on
the night of his
death

Table 5. Profiles generated from information pieces tagged by crowds in Step 3.

(6) Reverend Green called Mr. Boddy’s house twice on the night of his death
(7) Reverend Green kept a black utility knife in his pocket, but he told authorities that the knife

had broken months ago and he had discarded it.
(8) Reverend Green suspected Mr. Boddy had stolen money from the failed business they had

together several years ago
Step 3: The information tagged by crowds can be used to generate the following profiles: Step 4:

The single elimination competition results by crowds are shown in Fig. 13
Step 5: The final presentation created by the crowds is:
Miss Scarlet killed him. She was seen at Mr Boddy’s house on the night of his death. She also

had the murder weapon seen by her trainer in her bag. Also, she had the motive since she would
inherit his estate

C.1 Additional Experiment Results of Moderate Dataset
Step 1: Same as the above described experiment.
Step 2: The information pieces extracted by crowds are:
(1) Professor Plum has an active permit to carry a concealed handgun
(2) Professor Plum most recently renewed the concealed carry permit two months ago.
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Fig. 13. Single elimination competition of profiles in Step 4.

(3) Phone records show Reverend Green called Mr. Boddy’s house twice on the night of his death
(4) Sharon Miller possibly saw a car matching the description of Professor Plum’s car driving

past Mr. Boddy’s house on the night of his death.
(5) Sharon Miller is Mr. Boddy’s neighbor.
(6) Green kept a black utility knife in his pocket, for whittling wood carvings in his spare time.
(7) Green told authorities that the knife had broken months ago, and he had discarded it.
(8) Miss Scarlett was at Mr. Boddy’s house the night he died.
(9) Miss Scarlett said she was only returning books.
(10) Miss Scarlett’s personal trainer, Roger, told authorities that a month ago, he had seen an

ivory-handled fold-up knife in Scarlett’s gym bag
(11) Ms. Scarlett lost the knife weeks ago.
(12) Mr. Boddy has a large estate that will go to his nearest relative.
(13) Mr. Boddy’s nearest living relative was Miss Scarlett.
(14) Professor Plum’s wife, Linda was having an affair with Mr. Boddy.
(15) Linda said she didn’t believe that Professor Plum knew about the affair.
(16) Reverend Green and Mr. Body were partners in a failed business
(17) Reverend Green suspected Mr. Boddy of stealing money

Step 3: The information tagged by crowds generated five profiles. Following the order of amount
of evidence: Scarlett, Green, Plum, Miller, and Linda (Table 6).
Step 4: There were two rounds of competition. The first round knocked out Miller and Linda,

and the second round knocked out Green and Plum.
Step 5: The final presentation created by the crowds is:
Scarlett was known to have a knife similar to the weapon used in the murder, she was at Mr

Boddy’s house and was also the last person who saw the victim alive.

D ASSUMPTIONS
To manage the scope of the problem, we enforce some assumptions on the initial data input
and the final result output, focusing on the specific problem of text analysis we aim to tackle.
The identification of data elements in each step of the pipeline will be defined based on these
assumptions in following sections. We assume a crime solving or intelligence scenario.
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Scarlett Plum Green Miller Linda
Means Miss Scar-

lett’s personal
trainer, Roger,
told author-
ities that a
month ago,
he had seen
an ivory-
handled
fold-up knife
in Scarlett’s
gym bag. Ms.
Scarlett lost
the knife
weeks ago.

Professor
Plum most
recently re-
newed the
concealed
carry permit
two months
ago.

Green kept a
black utility
knife in his
pocket, for
whittling
wood carv-
ings in his
spare time.
Green told
authorities
that the knife
had broken
months ago,
and he had
discarded it.

Motive Mr. Boddy has
a large estate
that will go
to his near-
est relative.
Mr. Boddy’s
nearest living
relative was
Miss Scarlett.

Professor
Plum’s wife,
Linda was
having an
affair with
Mr. Boddy.
Linda said she
didn’t believe
that Professor
Plum knew
about the
affair.

Reverend
Green and
Mr. Body
were partners
in a failed
business. Rev-
erend Green
suspected
Mr. Boddy
of stealing
money

Professor
Plum’s wife,
Linda was
having an
affair with Mr.
Boddy.

Opportunity Miss Scar-
lett was at
Mr. Boddy’s
house the
night he
died. Miss
Scarlett said
she was only
returning
books.

Sharon Miller
possibly
saw a car
matching the
description
of Professor
Plum’s car
driving past
Mr. Boddy’s
house on the
night of his
death.

Phone records
show Rev-
erend Green
called Mr.
Boddy’s
house twice
on the night
of his death

Sharon Miller
possibly
saw a car
matching the
description
of Professor
Plum’s car
driving past
Mr. Boddy’s
house on the
night of his
death.

Table 6. Additional experiments: Profiles generated by information pieces tagged by crowds in Step 3.

D.1 Assumptions about External Data Resources
A1. There is a general investigation goal (global context). We assume there is a general investigation
goal to guide the whole sensemaking process. For example, we know there is a murder case (known
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victim, time, and location), or we suspect there is a potential terrorist attack (undecided who, what,
where, when).
A2. Source materials are narrative texts. Crime plots are diffused or obfuscated in the text with
noise, in some latent structure. The documents are modularized in some uniform way, and can be
disassembled into sentences, paragraphs or whole documents.
A3. Entities and their relationships are from the source texts. The key entities constructing the crime
plots are all in the text, but relationships between them may be more or less explicit, which is why
algorithms are not enough to uncover the hidden plots.
A4. No external information is required to solve the case. Common sense knowledge is enough to
understand and analyse the source material. All necessary information is covered in the narrative
texts and agents do not need to consult external information sources.
A5. Privacy and confidentiality is out of scope. Although we are using fictional crime-related evidence
data as the example dataset, our main focus is the analysis of text data. For confidential datasets,
the strategy could be applied within a private crowd (e.g. employees).

D.2 Assumptions about Reportable Results
A6. Assume an investigation report. Since the initial data input assumes crime plots are hidden in
narrative texts, the final outputs should be an investigation result reportable to a potential client.
A7. Event description fulfills formula for complete stories. The final results should conform to a simple
template of a complete story comprised of: who, what (method of crime), where, and when with
necessary supporting evidence.
A8. Each answer component has a finite number of options. There is a finite number of options for
each of the four W’s mentioned above, based on the content of the dataset.
A9. Missing links mean the solution is not correct. In terms of evaluation, if any of the W’s are missing
or any of the connections between entities are missing, the results are considered incomplete.
A10. Simpler explanations are preferred. In the final stage of analysis, among several candidate
hypotheses with the same level of correctness, simpler candidates are preferred.
A11. Constraints are enforced by resources. There are limits like elapsed time, number of guesses
allowed with given resources that constrains the analysis procedure. The pipeline cannot keep
running forever and must stop when the limits are met.
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